The Effects of Medium Spiny Neuron Morphologcial Changes on Basal Ganglia Network under External Electric Field: A Computational Modeling Study

نویسندگان

  • Xiaohan Zhang
  • Shenquan Liu
  • Feibiao Zhan
  • Jing Wang
  • Xiaofang Jiang
چکیده

The damage of dopaminergic neurons that innervate the striatum has been considered to be the proximate cause of Parkinson's disease (PD). In the dopamine-denervated state, the loss of dendritic spines and the decrease of dendritic length may prevent medium spiny neuron (MSN) from receiving too much excitatory stimuli from the cortex, thereby reducing the symptom of Parkinson's disease. However, the reduction in dendritic spine density obtained by different experiments is significantly different. We developed a biological-based network computational model to quantify the effect of dendritic spine loss and dendrites tree degeneration on basal ganglia (BG) signal regulation. Through the introduction of error index (EI), which was used to measure the attenuation of the signal, we explored the amount of dendritic spine loss and dendritic trees degradation required to restore the normal regulatory function of the network, and found that there were two ranges of dendritic spine loss that could reduce EI to normal levels in the case of dopamine at a certain level, this was also true for dendritic trees. However, although these effects were the same, the mechanisms of these two cases were significant difference. Using the method of phase diagram analysis, we gained insight into the mechanism of signal degradation. Furthermore, we explored the role of cortex in MSN morphology changes dopamine depletion-induced and found that proper adjustments to cortical activity do stop the loss in dendritic spines induced by dopamine depleted. These results suggested that modifying cortical drive onto MSN might provide a new idea on clinical therapeutic strategies for Parkinson's disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A possible functional organization of the corticostriatal input within the weakly-correlated striatal activity: a modeling study.

Recently, it was reported in an in vivo study that pairs of the striatal projection neurons (medium-sized spiny neurons) of the basal ganglia show asynchronous spiking within weakly-correlated subthreshold depolarized states. In this computational study, we investigate a possible functional organization of corticostriatal inputs that accounts for the experimental observations within known anato...

متن کامل

Striatal Function Explored Through a Biophysical Model of a Medium Spiny Neuron

The basal ganglia are a dynamic neural network of telencephalic subcortical nuclei, involved in adaptive control of behaviour. There has been much experimental evidence on the anatomy and physiology of the basal ganglia published over the last 25 years showing that the basal ganglia are involved in the learning of many adaptive behaviours, including motor planning, working memory and cognitive ...

متن کامل

Combined lesions of direct and indirect basal ganglia pathways but not changes in dopamine levels explain learning deficits in patients with Huntington's disease.

Huntington's disease (HD) is a hereditary neurodegenerative disease of the basal ganglia that causes severe motor, cognitive and emotional dysfunctions. In the human basal ganglia, these dysfunctions are accompanied by a loss of striatal medium spiny neurons, dysfunctions of the subthalamic nucleus and globus pallidus, and changes in dopamine receptor binding. Here, we used a neuro-computationa...

متن کامل

Distribution and Regulation of the G Protein- Coupled Receptor Gpr88 in the Striatum: Relevance to Parkinson’s Disease

The human basal ganglia constitutes a functional neural network located at the base of the forebrain. It receives most of its afferent inputs through the striatum, the major nucleus of the basal ganglia accomplishing fast neurotransmitter-mediated operations through somatotopically organized projections to the principal neuron cell type, the striatal GABAergic spiny projection neurons. This spi...

متن کامل

A Biophysically-Based Model of the Neostriatum as a Dynamically Reconfigurable Network

Physiological studies of the principal neurons of the neostriatum indicate that these cells have unusual membrane properties, which effectively give them two dynamically stable levels of membrane potential. One of these potential levels, the “up” state, allows the cell to fire in response to small changes in input spike frequency, while the other, the “down” state, leaves the cell relatively un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017